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Abstract

A graph is well-covered if every maximal independent set is also a maximum independent

so't. A 1-well-covered graph G has the additional property that G-v is also well-covered for

every point v in G. Thus, the 1-well-covered graphs form a subclass of the well-covered

graphs. We examine triangle-free 1-well-covered graphs. Other than C5 and K2, a 1-well-

covered graph must contain a triangle or a 4-cycle. Thus, the graphs we consider have

girth 4. Two constructions are given which yield infinite families of 1-,well-covered graphs

with girth 4. These families contain graphs with arbitrarily large independence number.



A CLASS OF WELL-COVERED GRAPHS WITH GIRTH FOUR

INTRODUCTION

A set of points in a graph is independent if no two points in the graph are joined by

a line. The maximum size possible for a set of independent points in a graph G is called the

independence number of G and is denoted by q (.Q. A set of independent points which

attains the maximum size is referred to as a maximum independent set. A set S of

independent points in a graph is maximal (with respect to set inclusion) if the addition to S

of any other point in the graph destroys the independence. In general, a maximal

independent set in a graph is not necessarily maximum.

In a 1970 paper, Plummer [10] introduced the notion of considering graphs in

which every maximal independent set is also maximum; he called a graph having this

property a well-covered graph. The work on well-covered graphs that has appeared in the

literature has focused on certain subclasses of well-covered graphs. Campbell [2]

characterized all cubic well-covered graphs with connectivity at most two, and Campbell

and Plummer [3] proved that there are only four 3-connected cubic planar well-covered

graphs. Royle and Ellingham [13] have recently completed the picture for cubic well-

covered graphs by determining all 3-connected cubic well-covered graphs.

For a well-covered graph with no isolated points, the independence number is at

most one-half the size of the graph. Well-covered graphs whose independence number is

exactly one-half the size of the graph are called yea well-coverd graphs. The subclass of

very well-covered graphs was characterized by Staples [14] and includes all well-covered •Io ,,.

trees and all well-covered bipartite graphs. Independently, Ravindra [11] characterized S CRA&l
C TAB

bipartite well-covered graphs and Favaron [6] characterized the very well-covered graphs. ,wr:nouncea

Recently, Dean and Zito [4] characterized the very well-covered graphs as a subset of a

more general (than well-covered) class of graphs. Distribution f
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Finbow and Hartnell [71 and Finbow, Hartnell, and Nowakowski [81 studied well-

covered graphs relative to the concept of dominating sets. Finbow, Hartnell, and

Nowakowski have also obtained a characterization of well-covered graphs with girth at

least five [91.

A well-covered graph is I -well-covered if and only if the deletion of any point from

the graph leaves a graph which is also well-covered. A well-covered graph is in the class

W., if and only if any two disjoint independent sets in the graph can be extended to disjoint

Smaximum independent sets. Staples [15] showed that a well-covered graph is 1-well-

covered if and only if it is in W2. Since we will appeal mostly to the notion of extending

two disjoint independent sets to disjoint m:n.ximum i~idependent sets, henceforth we use the

W2 nomenclature instead of referring to I-well-covered graphs.

Tiw; "lass of well-covered gaphs contains all complete graphs and all romplete

bipartit% g:iphs of the form Kn~n. The only cycles which are well-covered are C3, C4, C5,

and C7. Wc note that all complete graphs are also in W2, but no complete bipartite graphs

(except K1.1) are in W2. The cycles C3 and C5 are the only cycles in Wi.

PRELIMINARY RESULTS

We assume that all graphs are connected, unless otherwise stated. The readcr is

referred to [1] for terminology and notation not defined here. Note that a disconnected

graph is in W2 if and only if each of its ccmponents is ir W2. Suppose 0 is well-covered,

G - Kt. Let v be a point in G and consider the graph GJ%. Since G * K1, there exists a

point u - v. Since G is well-covered, the point u is contai ed in a maximum independent

set I in G. Clearly, v is not in I. Thus, I is also independ nt in G-v. Consequently, ct(G-

v) = ct(G) for any point v. Hence. fromi a result of Erd~s and Gallai [5) it follows that

a(G) _ IV(G)l/2. Thus, W2 graphs inherit this bound on independence number.

Staples [15] proved that a W2 graph cannot have an endpoint.



3

Theorem 1. If Ge W2 and G is not complete, then 8 _ 2.

If v is a point in the graph G, then denote the neighborhood of v by N(v). Let G,

be the graph induced by G - { v u N(v) }. Campbell [3] found the following very useful

necessary condition for a graph to be well-covered.

Theorem 2. If a graph G is well-covered and is not complete, then G, is well-covered

for all v in G. Moreover, a(Gv) = a(G) - I.

Fortunately, we prove in Theorem 3 that we have a similar necessary condition for

a well-covered graph ,o be in W2. We will reference Theorem 3 several times in this paper.

Theorem 3. If a graph G is in W2 and G is not complete, then G0, is in W2 for all v in G.

Proof. Let v be a point in G. Since G is not complete, then G, # 0. By Theorem

2, graph Gv is well-covered and a(Gv) = a(G) - 1. Suppose I and 12 are disjoint

independent sets in G,. Then I1 u (v) is an independent set in G, as is 12 u {v). Since G

is in W2, there exists a maximum inependent set J1 z1 u {v) such that J, n 12 = 0-.

Since 12 U. (v) and JI-v are disjoint independent sets in G, then there exists a maximum

independent set J2 - I2 U (v) such that J2rn (JI-v) -0. Hence, J2-v and JI-v are disjoint

- i�idependent sets in Gv. Since iUil = a(G), then 1Ji-vl = a(G) - 1, for i - 1,2. Thus, J.-v

contains I1, 12-v contains 12, and JI-v and J2-v are disjoint maximum independent sets in

G,. So any two disjoint independent sets in Gv can be extended to disjoint maximum

independent sets in Gv. By definition of the class W2, we conclude that G,, W2. []

We prove in the following theorem that if a W2 graph has a cutpoint, then the graph

obtained by deleting the cutpoint is also a W2 graph.



Theorem 4. If Ge W2 and v is a cutpoint of G, then G-v e W2.

Proof. Let H1, H2,.., Hn be the components of G-v. Let xE V(H,) and ye V(H 2 )

such that x - v and y - v. By Theorem 3, the graphs Gy = G-N[y] and G, = G-N[x] are in

W2. Clearly, Hi is a component of Gy, for i # 2, and Hj is a component of G,, for j • 1.

Hence, Hi is a W2 graph for all i. It follows that G-v is also a W2 graph. I]

In order to consider triangle-free W2 graphs, we introduce some terminology given

in [9]. A 5-cycle in a graph is called a basic 5-cycle provided that it contains no two

adjacent points of degree > 3 (that is, at most two points in the 5-cycle can have degree > 3

_ ,and two such points must be nonadjacent). A graph G is in the family PC if V(G) can be

partitioned into two sets V(C) and V(P) such that V(C) contains points from basic 5-cycles

in G and V(P) contains points from pendant lines in G; in addition, the lines induced by

V(P) must be independent. Two graphs in PC are given in Figure 1.

Figure 1

The gth of a graph is the size of a smallest ýyc!e in the graph. We say a graph

with no cycles has infinite girth. Finbow, Hartnell a d Nowakowski [9] proved that the

family PC described above contains all well-covered .raphs with girth at least five, except

K1, C7, and the four graphs shown in Figure 2. We s ate their result in the next theorem.

- 7:
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Figure 2

Theorem 5. Suppose G is well-covered with girth _ 5. Then Ge PC or

"Ge {Ki,C 7 ,P1o,P13,Q13,P14)•

We need Lemma 6 to show that K2 and C5 are the only W2 graphs in PC.

Consequently, we prove in Theorem 7 that a W2 graph other than K2 and C5 has girth at

most four.

Lemma 6. If G is in PC with girth _ 5 (G • K2 or C5), then Ge W2.

t--of. •uppose Ge W2. By Theorem 1, we have 8 2! 2. So GE PC and 5 - 2

together imply that (Ci), i = 1,...,n, partitions V(G), where each Ci is a basic 5-cycle.

Since G C5, then i 2t 2.

/V
i7

i 7:1

S_ • /' ,./ " ......7
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Now C, is joined to one or more of the Ci (i > 2) by one or more lines. Without

loss of generality, assume C1 is connected to C2 by line e = uv. Let C1 = uabcd and C2

vw,`Xyz. Since C1 is a basic 5-cycle then either v is not adjacent to b or v is not adjacent to

c. We can assume that v is not adjacent to c. Since v - u, then deg(a) = 2. Thus, {v,cj is

independent and so {v,c) and (a) don't extend to disjoint maximum independent sets in G,

a contradiction since GE W2. []

Theorem 7. If GE W2 (G # K2 or C5), then girth G < 4.

2roQf. Suppose girth G _Ž 5 and G is well-covered. By the preceding lemma, if

Ge.PC then GeW 2. From Theorem 5, it' PC, then Ge (K 1,C7,P10,P13,Q 13 ,P14 ). It

is straightforward to check that each of these 6 graphs is not in W2 by finding a pair of

disjoint independent sets that do not extend to disjoint maximum independent sets. Thus, if

G is well-covered with girth _ 5, then Ge W2. []

Hence, a W2 graph (other than K2 and C5) must contain a triangle or a 4-cycle.

Thus, a triangle-free W2 graph (other than K2 and C5) has girth 4. We study W2 graphs of

,irth four for the remainder of this paper.

A line in a graph G is a critical line if its removal increases the independence

number. A line-critical graph is a graph with only critical lines. Staples proved in [141 that

a triangle-free W2 graph is line-critical. Hence, all graphs given in the following

constructions are line-critical.

CONSTRUCTIONS

The following constructions show how to build a larger (in size and independence

number) W2 graph of girth four from a given such graph with some additional properties.

The fact that the constructions yield W2 graphs can be verified directly from the definition
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of a W2 graph by showing that every two disjoint independent sets can be extended to two

disjoint maximum independent sets.

Construction 1. Suppose H is a W 2 graph of ghlth 4 and C is a 4-cycle in H such that

a(H-C) = a(H) - 1 and H-C is in W2. Let C = acbd and let xy be a new line and A =

v1v2v3v 4 be a new 4-cycle. Form a new graph G with

V(G) = V(HQ) u V(A) u ({x,y), and

E(G) = E(H) u E(A) u (xy,vlxv 3y,v 2a,v2h,v 4c,v4d). See Figure 3.

Then G is a W2 graph of girth 4 with ct(G) = ct(H) + 2.

xV

v, '

' i" Figure 3

Suppose H1 is the graph in F~igure 4. If C is the 4-cycle in H1, then H1-C is a W2

graph. Also, cc(1i-1-C) = 2 = tc.(Ht) - 1. Thus, we can use H1 to construct a larger W2

graph of girth 4 with indepcti~dence number 5 via the construction in Construction 1. Call

this graph G5.

Vzzz

Figure 4

"S H i

grap. Asea(H-C) 2 cy(Il) - . Tuswe an ue H tocontruc a argr W
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Lei H2 be the graph on 12 points in Figure 6. Let C be the 4-cycle acbd, as

indicated in Figure 6. It can be checked that H2 is a W2 g,'apr. with a(H2) = 4, and H,-C =

H1 . Thus, a(H 2-C) = oc(H 2) - 1, and H2-C is a W2 graph. Thus, we can build a larger

W2 graph of girth 4 (with independence number 6) from H2 via the construction in

Construction 1. Call this graph G6.

Let HI = G3. Note that G5 satisfies the conditions ii Construction 1, with ihe 4-

cycle A that was used to build G5 'from G3 satisfying a(G5-A) = o(G5) - I and GS-Ar_ W2.

Hence, we can ohtain a W2 graph of girth 4 from G5, call it G7, via the construction in

Constructior 1. Therefore, by starting with H, = G3 we can recursively use the

construction in Construction I to generate an infinite family of W2 graphs of girth 4,

namely G3, G5, G7, G9, . . . , where ct(Gn) = n, for all odd n. Note that the "new" 4-

cycle used to construct G2k+1 from G2k-1 is a 4-cycle in G2k+1 which satisfies the

conditions in Construction 1. Thus, we "attach" to this 4-cycle to construct G2k+3 from

G2k.1 via the construction in Construction 1. Similarly, by starting with H2 = G4, we can

recursively generate W2 graphs of girth 4, namely G4, G6, G8, 01..... , where a(Gn)

n, for all even n.

By the nature of the construction in Construction 1, all graphs in the two infinite

families just given are exactly 2-connected. In order to construct 3-connected and 4-

connected W2 graphs of girth 4, we develop a different construction in Construction 2.
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Construction 2. Suppose H is a W2 graph of girth 4 with disjoint 4-cycles C1 and C2

such that (i) a(H-Ci) = a( H) - 1, for i = 1. 2, and (ii) H-Ci is a W2 graph, for i = 1, 2.

Also, H is either connected or has exactly two components. In the disconnected case, each

component contains exactly one of the 4-cycles Ci.

Let C1 = uly lvixh, C2 = u2Y2v2X2, and let A = abcd be a new 4-cycle. Form a new

graph G with

V(G) = V(H) u V(A), and

E(G) = E(H) u E(A) u (au1,avi,cx1 ,cyibx2,by2,du 2,dv2 }. See Fi&ure 5.

Then G is a W2 graph of girth 4 and (x(G) = a(H) + 1.

a d

Figure 5

Note that in Construction 2, we allowed H to be the disjoint union of two W2

graphs of girth 4, say G, and G2, each containing a 4-cycle Ci such that Gi-Ci is a W 2

graph and a(Gi-Ci) = a(Gi) - 1, for i = 1, 2. In this case, ca(G) = a(Gi) + a(G2) + 1 and

G is exactly 2-connected.

Let H be the graph on 32 points given in Figure 6. It is straightforward to verify

that H is a W2 graph of girth 4. Let C1 = uyvx and C2 = acbd; then C1 and C2 are disjoint
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4-cycles in H. }l-Ci is isomorphic to the graph in Figure 4, for i = !, 2. Thus, H-Ci

is a W2 graph and ct(H-C-) = (H) - 1, for i 1, 2.

Ux a b

x Y C d

Figure 6

We will work with copies of H. For copy Hi, we will denote the 4-cycles

corresponding to C1 and C2 by CI,i = uiyiVixi and C2,i = aicibid1, respectively.

Let HI and H2 be two copies of H. Obtain a new graph F1 by adjoining a new 4-

cycle A, to C1,1 and C2.1 as in Construction 2. See Figure 7. By Construction 2, graph

F, is a W2 graph of girth 4 and a(F1) = 2a(Hi) + 1.

Figure 7

Sin,.e H1-C1,2 is a W2 graph, then by Construction 2 the graph FI-C 1.2 is also a

W2 graph. Moreover, ot(F 1 -C1 ,2) = ox(H-C1 ,2 ) + a(H 2) + I = (ox(Hi) - 1) + ca(H,) + I =

a(H1 ) + or(H 2) = ax(F 1 ) - 1. C%;arly, F1-A1 is a W2 graph and ax(FI-A 1 ) = oa(F 1) - 1. So

we form a new graph F1,1 from F, by adjoining a ntw 4-cycle A2 to C1.2 and A, by the
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construction in Construction 2. By Construction 2, graph F1,1 is a W2 graph of girth 4

with ct(Ft,1) = a(F1 ) + 1.

Clearly, F1.1-A2 is in W2 and oqFI -A2) = a(F17) - 1. Since H2-C2.2 is in W2,

then by Construction 2 the graph F, -C2,2 is in W2 . Also, a(F1 -C2,2) = ct(FI-C).,) + I

S= t(F 1 )- 1) + I = a(FI) = a(FI1*) - 1. So we form a new graph FI,2 by adjoining a new

4-cycle A3 to A- and C2.2 by the construction given in Construction 2. Let G, = F1.2. G,

is shown in Figure 8. Then G, is a W2 graph of girth 4 by Construction 2. Also, G, is 3-

connected, IV(GI)I = 36 and a(GI) = 2a(Hi) + 3 = 11.

Figure 8

We conjecture that it is possible to construct an infinite family of 3-connected W2

graphs of girth 4 by using Construction 2 and a technique generalized from that used to

construct the graph G, given above.

Beginning with H given above in Figure 6, we can obtain the graph H' given in

Figure 9 by two successive applications of Construction 2. Thus, H' is a W2 graph of

girth 4. Note that H' is 4-connected. We conjecture that it is possible to construct an
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infinite tamily of 4-connected W2 graphs of girth 4 by using Construction 2 and by having

H' play the role of H above in constructing CG.

Figure 9

Not all W2 graphs of girth 4 arise from the constructions given above. Neither of

the graphs given in Figure 10 can be built using our constructions. The graph on 1 3 points

is 4-regular and was found by Royle [12] using a computer program. Note that neither of

the graphs has any 4-cycle that satisfies the conditions in Construction 1 or Construction 2.

Figure 10

\a
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CUTSETS

Now that we have constructed some W2 graphs of girth 4, we look at minimum

point cutsets for such graphs.

Theorem 8. If G is a W2 graph of girth 4, then G is 2-connected.

Srof Assume to the contrary that G has a cutpoint v. Let G1, G2, .... Gn be the

components of G-v. By Theorem 4, graphs G1, ..., Gn, are W2 graphs. Let Ni = N(v) n

Gi. for i = 1,...,n. Since G has girth 4, then Ni is independent for all i. Since Gie W2,

there exists maximum independent sets Ji in Gi such that Ji r) Ni = 0, for all i. Clearly, J

= JJ u...u J, is an independent set in G. Consequently, J and {v) are disjoint

independent sets in G which do not extend to disjoint maximum independent sets in G.

This is a contradiction since Ge W2. Hence, G is 2-connected. 0]

Lemma 9. Suppose G is a W2 graph of girth 4 and {u,v) is a cutset of G. If u - v, then

every component of G- (u,v), except possibly one, is a W2 graph.

Proof. Let GC,...., Gn be the components of G-Ju,v). Let Ui= N(u) n Gi and

Vi = N(v) o Gi, for all i. Since G has girth 4, then xc Ui implies x is not adjacent to v,

and ye Vi implies y is not adjacent to u, for all i. Also, Ui and V; are independent sets,

for all i.

Sippose that xe Ui, ye Vi implies x - y, for all i. Let U U U1 u... u Un. Then

U and Iv) are disjoint independent sets in G which do not extend to disjoint maximum

independent sets in G, contradicting Ge W2. Thus, there exists je 11, ... , n) such that x

and y are points in Gi, xc Uj, ye Vj and x is not adjacent to y.

Consider the graph Gx = G-Nfx]. Since x is not adjacent to y, then ye G.. Since

Ge W2, then by Theorem 3 so is Gx, The:, v is a cutpoint for Gx, and by Theorem 4, the
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graph Ga-v is a W2 graph. Since Gi is a component of Ga-v, for i # j, then Gi is a W2

graph, i # j. []

Theorem 10. Suppose G is a W2 graph of girth 4 and (u,v} is a cutset for G.

Then {u,v) is independent.

Proof. Suppose u - v. Let G1,. Gn be the components of G-(u,v). Let U;=

N(u) r) Gi and Vi = N(v) r) Gi, for all i. Since G has girth 4, then Ui and Vi are disjoint

independent sets, for all i.

Case 1. Suppose Gi is a W 2 graph, for all i. Then there exist maximum

independent sets Ji in Gi such that Ji p Vi and Ji n Ui = 0, for all i. Let J = Ji u... .U Jn.

Then J and {u) are disjoint independent sets in G which do not extend to disjoint maximum

independent sets in G, contradicting GE W2.

Case 2. So Gj is not a W2 graph, for some j. By Lemma 9, graph Gi is a W2

graph for i # j. So let Ji p Vi be a maximum independent set in Gi such that Ji n• Ui = 0,

for all i #J. For each i •j, pick xiE Ui. Let X = {xi: i #j). Clearly X is an independent

set. By Theorem 3, the graph Gx = G-(X Q N(X)J is a V!2 graph.

Suppose there exists some ye Vi such that y is not adjacent to xi, for some i # j.

Then v is a curpoint for Gx. By Theorem 4, the graph Gx-v is in W2. Since Gx-v

contains Gj as a component and Gj is not a W2 graph, we obtain a contradiction. Thus,

ye Vi implies y - xi, for all i # j.

LetH be the subgraph of G induced by Gju (v). Since yeVi implies y - xi, for

all i *j, then H is a component of Cx. Since Gxe W2, then He W2. Hence, there exists

/ maximum independent set Jj in H such that J,, = Vj and Jj ni U1 = 0. Let J = J, u .. u in,

Then J and (u) are disjoint independent sets in G which do not extend to disjoint maximum

independent sets in G. This contradicts Ge W2.

Therefore u,v) must be independent. [1

--------
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Since a cutset of size two in a W2 graph of girth 4 is independent, we are led to ask

if the same is true for minimum cutsets of size three or more. The next two lemmas help to

answer the question for minimum cutsets of size three in W2 graphs of girth 4.

Lemma 11. Suppose G is 3-connected W2 graph of girth 4 and (u,v,t) is a cutset for G.

-- Then {u,v,t) does not induce exactly one line.

o Assume to the contrary that (u,v,t) induces precisely the line uv. Let G1,.

.G, be the components of G-{u,v,t). Let Ui= N(u) rGi, Vi= N(v) r Gi, and Ti =

N(t) n Gi, for all i.

Since t is adjacent to neither u nor v, then we must have t - x for all xe Ui and t - y

for all ye Vi, for all values of i except possibly one. Otherwise, the graph Gt is a W2 graph

with cutset {u,v}, contradicting Theorem 10. Without loss of generality, we assume t - x

for all xe Ui and t - y for all y e Vi, for all i •1. Since G has no triangles, it follows that

the sets Ui u Vi are independent, for i • 1.

Consider any component different from GI, say G2. Choose s - t such that se V2.

Then the graph G, has u as a cutpoint. So by Theorem 4, ,raph G,-u is a W2 graph.

Since G1 is a component of Gs-u, then G1 is a W2 graph.

Case 1. Suppose there exists ae U1 and be V, such that a - t and b - t. Since G

has no triangles, then a is not adjacent to b. Thus, Ga is a W2 graph which has v as a

cutpoint. By Theorem 4, the graph Ga-v is a W2 graph. Since Gi, i # 1, is a component of

Ga-v, then Gi, io 1, is a W2 graph. Thus, there exist maximum independent sets Ji in Gi

such that Ji r) Vi = 0 (i # 1), and there exists a maximum independent set J, in G1 such

that aeJI and J1 n Vi = 0. Let J = J, u... u J,. Then J and (v) are independent sets

in G which don't extend to disjoint maximum independent sets in G, contradicting Ge W2.

Case 2. So either t is not adjacent to a for all ae U1, or t is not adjacent to b for all

be V1. Without loss of generality, assume t is not adjacent to a for all ae U1.
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Case 2.1. Suppose T1-V1 •0. Let xeT1 -VI; that is, t- x and xeV 1 . From the

assumption t is not adjacent to a for all ae U1, we see also that xe U1. If there exists

ac U1 such that x is not adjacent to a, or be V1 such that x is not adjacent to b, then the W2

graph Gx has (u,v) as a cutset. This contradicts Theorem 10. Thus, x - a for all ae U1

and x - b for all be V1. Since G has girth 4, then ae U1 and be V, imply that a is not

adjacent to b. Similarly, be V, implies b is not adjacent to t. Hence, T, n V1 = 0 = T, n

U1. Therefore, TI-V 1 = T1. Thus, if ye T1 , it follows that y - a for all ae U1.

Fix ze U1. From above, z - y for all ye TI. But then G, has v as a cutpoint and so

by Theorem 4 the graph G,-v is a W2 graph.

Case 2.1.1. Suppose n >_ 3. Then t is a cutpoint for Ga-v. By Theorem 4, graph

Gz-v-t is a W2 graph. Since Gi, i # 1, is a component of G7-v-t, then Gi, i # 1, is a W2

graph. Thus, there exist maximum independent sets Ji in Gi such that Vi n Ji -0 (i # 1),

and there exists maximum independent set J, in GI such that ze J1 and V1 I Jr = 0. Let J

= J1 u... u J,. Then J and {v) don't extend to disjoint maximum independent sets in G,

contradicting Ge W2.

Case 2.1.2. So assume n = 2. Let H be the graph induced by G2 U t. Then H is a

component of Gz-v; hence, H is a W2 graph. From earlier, U2 and V2 are disjoint and

independent, and t - x for all xE U2. Since H is a W2 graph, there exists maximum

independent set JH in H such that JH Q U2 and JH ) V2 = 0. Note that tfJH. Since GI is a

W2 graph, there exists maximum independent set Jl in GI such that zeJI and J1 I V1 = 0.

Then J = JI U JH is independent in G. So J and {v) don't extend to disjoint maximum

independent sets in G, a contradiction.

"Case 2.2. Thus, TI-V 1 = 0. Hence, V1 Q T1. Since U1 and V1 are disjoint

independent sets in GI, then there exists maximum independent set Jl 2 U1 in G1 such that

J, r V1 = 0. But then J1 u (t) and {v) are disjoint independent sets in G which don't

extend to disjoint maximum independent sets in G, contradicting Ge W2.

Therefore, {u,v,t} does not induce exactly one line in G. f1

-7
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Lemma 12. Suppose G is a 3-connected W2 graph of girth 4 with cutset (u,v,t}. Then

{u,v,t) induces at most one line.

Proof. Assume to the contrary that (u,v,t) induces two lines, say uv and vt (since

G has girth 4, then {u,v,t) cannot induce three lines). Let G1, . . Gn be the components

of G-(u,v,t). Let Ui= N(u) n Gi, Vi = N(v) r Gi and Ti= N(t) rn Gi, for all i. Note that

Ui Cr Vi 0 = Vi n Ti, for all i; however, we do not know that Ui n Ti = 0.

* Suppose for all xeUi, for all i, that t - x. Then It) and (u) don't extend to disjoint

maximum independent sets in G, contradicting Ge W2. So, without loss of generality,

assume there exists some xe U1 such that t is not adjacent to x.

" .Suppose there exists some ze V1 such that z is not adjacent to x. Then Gx has

{v,t) as a cutset, contradicting Theorem 10. We are implicitly using Theorem 13 here,

which states that a W2 graph of girth 4 is 2-connected. Hence, ze V, implies x - z.

Since G is 3-connected, T, 0. If there exists some ye T1 such that x is not

adjacent to y, then Gx will have (vt) as a cutset, again contradicting Theorem 10. So

ye Tt implies y - x. Since G has girth 4 and x - y for all y' 11 , then U, n T, = 0.

Since x - y for all ye T1 and x - z for all ze V1, then ye T, and ze V. 'Mrles y is not

..-- adjacent to z. Thus, if ye T, then Gy has (u,v) as a cutset. This contradicts Theorem 10.

Therefore, (u,v,t) cannot induce two lines in G. Since G has girth 4, it follows

that Iu,v,t} induces at most one line.

With the two preceding lemmas, it is a simple matter to prove in the next theorem

--that a minimum cutset of size three in a W2 graph of girth 4 must be independent.



Theorem 13. If G is a 3-connected W2 graph of girth 4 with cutset (u,v,t}, then (u,v,t)

is independent.

Proof. By Lemma 12, the set (u,v,t) induces at most one line. By Lemma 11, the

set (u,v,t} does not induce exactly one line. Hence, {u,v,t} induces no lines in G; that is,

[u,v,t} is independent in G. []

For minimum cutsets of size four or greater, we do not know if the cutsets must be

"independent.

/.
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